774 research outputs found

    Mechanism-based model characterizing bidirectional interaction between PEGylated liposomal CKD-602 (S-CKD602) and monocytes in cancer patients

    Get PDF
    S-CKD602 is a PEGylated liposomal formulation of CKD-602, a potent topoisomerase I inhibitor. The objective of this study was to characterize the bidirectional pharmacokinetic-pharmacodynamic (PK-PD) interaction between S-CKD602 and monocytes. Plasma concentrations of encapsulated CKD-602 and monocytes counts from 45 patients with solid tumors were collected following intravenous administration of S-CKD602 in the phase I study. The PK-PD models were developed and fit simultaneously to the PK-PD data, using NONMEM®. The monocytopenia after administration of S-CKD602 was described by direct toxicity to monocytes in a mechanism-based model, and by direct toxicity to progenitor cells in bone marrow in a myelosuppression-based model. The nonlinear PK disposition of S-CKD602 was described by linear degradation and irreversible binding to monocytes in the mechanism-based model, and Michaelis-Menten kinetics in the myelosuppression-based model. The mechanism-based PK-PD model characterized the nonlinear PK disposition, and the bidirectional PK-PD interaction between S-CKD602 and monocytes. © 2012 Cárdenas et al, publisher and licensee Dove Medical Press Ltd

    Mice lacking NF-κB1 exhibit marked DNA damage responses and more severe gastric pathology in response to intraperitoneal tamoxifen administration

    Get PDF
    Tamoxifen (TAM) has recently been shown to cause acute gastric atrophy and metaplasia in mice. We have previously demonstrated that the outcome of Helicobacter felis infection, which induces similar gastric lesions in mice, is altered by deletion of specific NF-κB subunits. Nfkb1-/- mice developed more severe gastric atrophy than wild-type (WT) mice 6 weeks after H. felis infection. In contrast, Nfkb2-/- mice were protected from this pathology. We therefore hypothesized that gastric lesions induced by TAM may be similarly regulated by signaling via NF-κB subunits. Groups of five female C57BL/6 (WT), Nfkb1-/-, Nfkb2-/- and c-Rel-/- mice were administered 150 mg/kg TAM by IP injection. Seventy-two hours later, gastric corpus tissues were taken for quantitative histological assessment. In addition, groups of six female WT and Nfkb1-/- mice were exposed to 12 Gy γ-irradiation. Gastric epithelial apoptosis was quantified 6 and 48 h after irradiation. TAM induced gastric epithelial lesions in all strains of mice, but this was more severe in Nfkb1-/- mice than in WT mice. Nfkb1-/- mice exhibited more severe parietal cell loss than WT mice, had increased gastric epithelial expression of Ki67 and had an exaggerated gastric epithelial DNA damage response as quantified by γH2AX. To investigate whether the difference in gastric epithelial DNA damage response of Nfkb1-/- mice was unique to TAM-induced DNA damage or a generic consequence of DNA damage, we also assessed gastric epithelial apoptosis following γ-irradiation. Six hours after γ-irradiation, gastric epithelial apoptosis was increased in the gastric corpus and antrum of Nfkb1-/- mice. NF-κB1-mediated signaling regulates the development of gastric mucosal pathology following TAM administration. This is associated with an exaggerated gastric epithelial DNA damage response. This aberrant response appears to reflect a more generic sensitization of the gastric mucosa of Nfkb1-/- mice to DNA damage

    Genome wide single cell analysis of chemotherapy resistant metastatic cells in a case of gastroesophageal adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metastatic progression due to development or enrichment of therapy-resistant tumor cells is eventually lethal. Molecular characterization of such chemotherapy resistant tumor cell clones may identify markers responsible for malignant progression and potential targets for new treatment. Here, in a case of stage IV adenocarcinoma of the gastroesophageal junction, we report the successful genome wide analysis using array comparative genomic hybridization (CGH) of DNA from only fourteen tumor cells using a bead-based single cell selection method from a bone metastasis progressing during chemotherapy.</p> <p>Case presentation</p> <p>In a case of metastatic adenocarcinoma of the gastroesophageal junction, the progression of bone metastasis was observed during a chemotherapy regimen of epirubicin, oxaliplatin and capecitabine, whereas lung-, liver and lymph node metastases as well as the primary tumor were regressing. A bone marrow aspirate sampled at the site of progressing metastasis in the right iliac bone was performed, and single cell molecular analysis using array-CGH of Epithelial Specific Antigen (ESA)-positive metastatic cells, and revealed two distinct regions of amplification, 12p12.1 and 17q12-q21.2 amplicons, containing the KRAS (12p) and ERBB2 (HER2/NEU) (17q) oncogenes. Further intrapatient tumor heterogeneity of these highlighted gene copy number changes was analyzed by fluorescence in situ hybridization (FISH) in all available primary and metastatic tumor biopsies, and ErbB2 protein expression was investigated by immunohistochemistry.</p> <p>ERBB2 was heterogeneously amplified by FISH analysis in the primary tumor, as well as liver and bone metastasis, but homogenously amplified in biopsy specimens from a progressing bone metastasis after three initial cycles of chemotherapy, indicating a possible enrichment of erbB2 positive tumor cells in the progressing bone marrow metastasis during chemotherapy. A similar amplification profile was detected for wild-type KRAS, although more heterogeneously expressed in the bone metastasis progressing on chemotherapy. Correspondingly, the erbB2 protein was found heterogeneously expressed by immunohistochemical staining of the primary tumor of the gastroesophageal junction, while negative in liver and bone metastases, but after three initial cycles of palliative chemotherapy with epirubicin, oxaliplatin and capecetabine, the representative bone metastasis stained strongly positive for erbB2.</p> <p>Conclusion</p> <p>Global analysis of genetic aberrations, as illustrated by performing array-CGH analysis on genomic DNA from only a few selected tumor cells of interest sampled from a progressing bone metastasis, can identify relevant therapeutic targets and genetic aberrations involved in malignant progression, thus emphasizing the importance and feasibility of this powerful tool on the road to more personalized cancer therapies in the future.</p

    Discovering study-specific gene regulatory networks

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Microarrays are commonly used in biology because of their ability to simultaneously measure thousands of genes under different conditions. Due to their structure, typically containing a high amount of variables but far fewer samples, scalable network analysis techniques are often employed. In particular, consensus approaches have been recently used that combine multiple microarray studies in order to find networks that are more robust. The purpose of this paper, however, is to combine multiple microarray studies to automatically identify subnetworks that are distinctive to specific experimental conditions rather than common to them all. To better understand key regulatory mechanisms and how they change under different conditions, we derive unique networks from multiple independent networks built using glasso which goes beyond standard correlations. This involves calculating cluster prediction accuracies to detect the most predictive genes for a specific set of conditions. We differentiate between accuracies calculated using cross-validation within a selected cluster of studies (the intra prediction accuracy) and those calculated on a set of independent studies belonging to different study clusters (inter prediction accuracy). Finally, we compare our method's results to related state-of-the art techniques. We explore how the proposed pipeline performs on both synthetic data and real data (wheat and Fusarium). Our results show that subnetworks can be identified reliably that are specific to subsets of studies and that these networks reflect key mechanisms that are fundamental to the experimental conditions in each of those subsets

    FGFR2 amplification has prognostic significance in gastric cancer: results from a large international multicentre study

    Get PDF
    Background: In preclinical gastric cancer (GC) models, FGFR2 amplification was associated with increased tumour cell proliferation and survival, and drugs targeting this pathway are now in clinical trials. Methods: FGFR2 FISH was performed on 961 GCs from the United Kingdom, China and Korea, and the relationship with clinicopathological data and overlap with HER2 amplification were analysed. Results: The prevalence of FGFR2 amplification was similar between the three cohorts (UK 7.4%, China 4.6% and Korea 4.2%), and intratumoral heterogeneity was observed in 24% of FGFR2 amplified cases. FGFR2 amplification was associated with lymph node metastases (Po0.0001). FGFR2 amplification and polysomy were associated with poor overall survival (OS) in the Korean (OS: 1.83 vs 6.17 years, P ¼ 0.0073) and UK (OS: 0.45 vs 1.9 years, Po0.0001) cohorts, and FGFR2 amplification was an independent marker of poor survival in the UK cohort (P ¼ 0.0002). Co-amplification of FGFR2 and HER2 was rare, and when high-level amplifications did co-occur these were detected in distinct areas of the tumour. Conclusion: A similar incidence of FGFR2 amplification was found in Asian and UK GCs and was associated with lymphatic invasion and poor prognosis. This study also shows that HER2 and FGFR2 amplifications are mostly exclusive

    Epac inhibits migration and proliferation of human prostate carcinoma cells

    Get PDF
    BACKGROUND: It was recently found that cAMP mediates protein kinase A-independent effects through Epac proteins. The aim of this study was to investigate the role of Epac in migration and proliferation of prostate carcinoma cells. METHODS: The effect of Epac activation was determined by [(3)H] thymidine incorporation and scratch assays in PC-3 and DU 145 cells. Furthermore, cytoskeletal integrity was analysed by phalloidin staining. The participation of intracellular Epac effectors such as mitogen-activated protein (MAP) kinases, Rap1- and Rho-GTPases was determined by immunoblotting and pull-down assay. RESULTS: The specific Epac activator 8-pCPT-2'-O-Me-cAMP (8-pCPT) interfered with cytoskeletal integrity, reduced DNA synthesis, and migration. Although 8-pCPT activated Rap1, it inhibited MAP kinase signalling and RhoA activation. These findings were translated into functional effects such as inhibition of mitogenesis, cytoskeletal integrity, and migration. CONCLUSION: In human prostate carcinoma cells, Epac inhibits proliferative and migratory responses likely because of inhibition of MAP kinase and RhoA signalling pathways. Therefore, Epac might represent an attractive therapeutic target in the treatment of prostate cancer. British Journal of Cancer (2009) 101, 2038-2042. doi: 10.1038/sj.bjc.6605439 www.bjcancer.com Published online 17 November 2009 (C) 2009 Cancer Research U

    Five biopsy specimens from the proximal part of the tumor reliably determine HER2 protein expression status in gastric cancer

    Get PDF
    Background: National guidelines recommend trastuzumab for treatment of patients with metastatic HER2-positive gastric cancer (GC). There is currently no guideline indicating the number of biopsy specimens and the location from which they should be obtained to reliably determine the human epidermal growth factor receptor 2 (HER2) status in GC. The aim of this pilot study was (a) to quantify HER2-positive tumor cells in different tumor regions to assess the spatial heterogeneity of HER2 expression and (b) to establish the required number of biopsy specimens and the location from which they should be obtained within the tumor to achieve concordance between HER2 expression status in the biopsy specimens and the resection specimen. Methods: HER2 expression was quantified in six different regions of 24 HER2-positive GC and in six virtual biopsy specimens from different luminal regions. Intratumoral regional heterogeneity and concordance between HER2 status in the biopsy specimens and the resection specimen were analyzed. Results: HER2-positive cells were more frequent in the luminal tumor surface compared with deeper layers (p < 0.001). GCs with differentiated histological features were more commonly HER2 positive (p < 0.001). Assessment of HER2 expression status in five biopsy specimens was sufficient to achieve 100 % concordance between the biopsy specimens and the resection specimen. Conclusions: This is the first study to suggest preferential HER2 positivity at the luminal surface in GC and to establish a minimum number of biopsy specimens needed to obtain a biopsy HER2 result which is identical to that from the whole tumor. Our study suggests that HER2 testing in five tumor-containing endoscopic biopsy specimens from the proximal (oral) part of the tumor is advisable. The results from this pilot study require validation in a prospective study
    corecore